
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 8: Create, Join and Lock

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Project 2
By the end of today, you should know everything needed to do
project 2.

Work on the project incrementally.
1. Start with CPU and thread basics: cpu and thread constructors

and yield.
2. Enable and disable interrupts for atomicity and implement mutex

and cv.
3. Add support for multi-processors (optional.)

Use lots of asserts and create test cases.

2

Project 2

Covered everything you need to know to implement all of
the project

Work on the project incrementally
CPU and thread basics (cpu::init, thread constructor,
and yield)
Enable/disable interrupts for atomicity
Implement mutex and cv
Add support for multi-processors

3

Reminders

Do homework questions on semaphores before the lab
on Friday.

Honor code:
It’s okay to discuss or lookup questions related to
problems, project specs, or C++ syntax.
Not okay to discuss solutions!

4

Recap
How to handle non-running threads?

Save private state in TCB to resume execution later.

How to switch between threads?
Transfer control from current thread to OS.
Save state of current thread and load state of next
thread.

5

Creating a new thread
What state should a new thread be put into?

Recall: When a thread is paused, its state is put in ready
queue.

Implication:
When creating a thread, construct its TCB as if it had
been paused at the start of its main procedure.

6

Creating a new thread
Steps

1. Allocate and initialize new thread control block.

2. Allocate and initialize new stack. In Project 2, this is
done via makecontext().

3. Add thread control block to ready queue.

7

High-level synchronization
Raise the level of abstraction to make life easier for
programmers

8

Operating System

Hardware

Applications

Atomic operations
(load/store, interrupt enable/

disable, test&set)

Concurrent programs

High-level synchronization
primitives

(lock, monitor, semaphore)

Implementing high-level synchronization primitives

Data structures used must be thread-safe.

Cannot use high-level synchronization primitives.

Need to use atomic operations provided by hardware.

9

Atomicity on a uniprocessor
Potential approach if single CPU:

Prevent context switches during an operation by preventing
events that cause context switches.

Example: Disable interrupts to ensure atomicity.

10

disable interrupts;
if (no milk)

buy milk;
enable interrupts;

disable interrupts
while (1)

;

Problems?

Should not allow interrupts to be disabled in user code.

Lock implementation #1
lock()

{
disable interrupts;
while (status != FREE)

{
enable interrupts;
disable interrupts;
}

status = BUSY;
enable interrupts;
}

11

unlock()
{
disable interrupts;
status = FREE;
enable interrupts;
}

What is wrong with this?
It’s busy waiting. It would be better to give up the processor.

Busy waiting
Problem with lock implementation #1:

Waiting thread uses lots of CPU time just checking for lock to
become free.
Better for thread to sleep and let other threads run.

Solution: Integrate lock implementation with thread dispatch:
Have lock manipulate thread queues.
Waiting thread gives up CPU, so other threads can run.
Someone wakes up thread when lock is free.

12

Lock implementation #2
lock()

{
disable interrupts;
if (status == FREE)

status = BUSY;
else

{
add thread to queue of

threads waiting for lock;
switch to next ready thread;
}

enable interrupts;
}

13

unlock()
{
disable interrupts;
status = FREE;
if (any thread is waiting

for this lock)
{
move waiting thread to

ready queue;
status = BUSY;
}

enable interrupts;
}

Lock implementation #2
lock()

{
disable interrupts;
if (status == FREE)

status = BUSY;
else

{
add thread to queue of

threads waiting for lock;
switch to next ready thread;
}

enable interrupts;
}

14

unlock()
{
disable interrupts;
status = FREE;
if (any thread is waiting

for this lock)
{
move waiting thread to

ready queue;
status = BUSY;
}

enable interrupts;
}

We don’t want to busy wait.

Lock implementation #2
lock()

{
disable interrupts;
if (status == FREE)

status = BUSY;
else

{
add thread to queue of

threads waiting for lock;
switch to next ready thread;
}

enable interrupts;
}

15

unlock()
{
disable interrupts;
status = FREE;
if (any thread is waiting

for this lock)
{
move waiting thread to

ready queue;
status = BUSY;
}

enable interrupts;
}

When we run again, the lock will have been taken for us.
This is called a hand-off pattern that guarantees that only the waiter
gets the lock.

Okay to sleep with interrupts disabled?
lock()

{
disable interrupts;
if (status == FREE)

status = BUSY;
else

{
add thread to queue of

threads waiting for lock;
switch to next ready thread;
}

enable interrupts;
}

16

unlock()
{
disable interrupts;
status = FREE;
if (any thread is waiting

for this lock)
{
move waiting thread to

ready queue;
status = BUSY;
}

enable interrupts;
}

How does it work that we are going to sleep with interrupts disabled?
Could we re-enable the interrupts before doing that?

Would this work?
lock()

{
disable interrupts;
if (status == FREE)

status = BUSY;
else

{
enable interrupts;
add thread to queue of

threads waiting for lock;
switch to next ready thread;
}

enable interrupts;
}

17

unlock()
{
disable interrupts;
status = FREE;
if (any thread is waiting

for this lock)
{
move waiting thread to

ready queue;
status = BUSY;
}

enable interrupts;
}

The other thread holding the lock could release it before we put ourselves on
the waiting list. We’d possibly sleep forever.

Would this work?
lock()

{
disable interrupts;
if (status == FREE)

status = BUSY;
else

{
add thread to queue of

threads waiting for lock;
enable interrupts;
switch to next ready thread;
}

enable interrupts;
}

18

unlock()
{
disable interrupts;
status = FREE;
if (any thread is waiting

for this lock)
{
move waiting thread to

ready queue;
status = BUSY;
}

enable interrupts;
}

What happens if we get a timer interrupt?

Problem scenario
lock()

{
disable interrupts;
if (status == FREE)

status = BUSY;
else

{
add thread to queue of

threads waiting for lock;
enable interrupts;
switch to next ready thread;
}

enable interrupts;
}

19

Thread A is attempting to acquire mutex.
Thread B holds the mutex and is about to
release it.

1. lock() puts A’s TCB on the mutex’s
wait queue.

2. lock() enables interrupts.

3. Interrupt causes context switch to B,
putting A’s TCB on the ready queue.

4. unlock() moves A’s TCB from the
mutex wait queue to the ready queue.

Suddenly, there are two copies of A’s TCB
on the ready queue.

Correct pattern
lock()

{
disable interrupts;
if (status == FREE)

status = BUSY;
else

{
add thread to queue of

threads waiting for lock;
switch to next ready thread;
}

enable interrupts;
}

20

unlock()
{
disable interrupts;
status = FREE;
if (any thread is waiting

for this lock)
{
move waiting thread to

ready queue;
status = BUSY;
}

enable interrupts;
}

When we switch context, interrupts must be disabled. So, they’re still
disabled when we’re switched back and we must immediately re-enable
them. (We can only swap back to somewhere that swapped context.)

Interrupt enable/disable pattern
Adding thread to lock wait queue + switching must be atomic.

Swapcontext invariants for uniprocessors:

1. Thread must leave interrupts disabled when calling swapcontext.

2. All threads assume interrupts are disabled when returning from
swapcontext.

3. Must re-enable interrupts before returning to user code.

21

Enabling/disabling interrupts
Adding thread to lock wait queue + switching must be atomic
Thread must leave interrupts disabled when calling switch

Inside lock(), what causes thread to return from switch?
What can lock() assume about the state of interrupts when switch returns?

Switch invariant
All threads promise to disable interrupts before switching context
All threads assume interrupts are disabled when returning from switch
Re-enable interrupts before returning to user-level code

22

23

Thread A

back from swapcontext
enable interrupts
}

<user code runs>
lock()

{
disable interrupts
swapcontext

back from swapcontext
enable interrupts
}

Thread B
lock()
yield()

{
disable interrupts
swapcontext

back from swapcontext
enable interrupts
}

<user code runs>
unlock()

{
move thread A to ready queue;
}

yield()
{
disable interrupts;
swapcontext

Locks on multiprocessors
On uniprocessor, disabling interrupts prevents current thread from
being switched out.

But this doesn’t work on a multiprocessor:
1. Other processors are still running threads.
2. Not acceptable to stop all other CPUs from executing.

Solution is an atomic TestAndSet in a spin lock.

24

25

Atomic Read-Modify-Write: Test-And-Set

Semantics of test-and-set are to
atomically write 1 to a memory
location and return the old value.

In Project 2, use exchange in
std::atomic

TestAndSet(X)
{
old = X;
X = 1;
return old;
}

Atomic

TestAndSet usage
// lock is initially free.

int status = 0;

SpinLock()
{
while (TestAndSet(status))

;
}

ReleaseSpinLock()
{
status = 0;
}

26

If you are able to change
the status from 0 to 1, it
means you successfully
took the lock.

TestAndSet is atomic, so
only one thread will see
transition from 0 to 1.

Lock implementation #3
int guard = 0;

lock()
{
disable interrupts;
while (TestAndSet(guard))

;

if (status == FREE)
status = BUSY;

else
{
add thread to queue of threads

waiting for lock;
switch to next ready thread;
}

guard = 0;
enable interrupts;
}

27

unlock()
{
disable interrupts;
while (TestAndSet(guard))

;

status = FREE;
if (any thread is waiting for

this lock)
{
move waiting thread to ready

queue;
status = BUSY;
}

guard = 0;
enable interrupts;
}

Would this work?
int guard = 0;

lock()
{
// disable interrupts;
while (TestAndSet(guard))

;

if (status == FREE)
status = BUSY;

else
{
add thread to queue of threads

waiting for lock;
switch to next ready thread;
}

guard = 0;
// enable interrupts;
}

28

unlock()
{
disable interrupts;
while (TestAndSet(guard))

;

status = FREE;
if (any thread is waiting for

this lock)
{
move waiting thread to ready

queue;
status = BUSY;
}

guard = 0;
enable interrupts;
}

No, we could get a timer interrupt holding the guard that might want to move us to
the ready queue but it wouldn’t be able to acquire the guard to do that.

Would this work?
int guard = 0;

lock()
{
while (TestAndSet(guard))

;

disable interrupts;
if (status == FREE)

status = BUSY;
else

{
add thread to queue of threads

waiting for lock;
switch to next ready thread;
}

guard = 0;
enable interrupts;
}

29

unlock()
{
disable interrupts;
while (TestAndSet(guard))

;

status = FREE;
if (any thread is waiting for

this lock)
{
move waiting thread to ready

queue;
status = BUSY;
}

guard = 0;
enable interrupts;
}

No, we could be switched out, holding the guard, locking out the other processors
in this spin lock.

Summary of lock solution
High-level idea:

Atomically add thread to a waiting list and go to sleep.

How did we achieve this?
1. Disable interrupts and TestAndSet(guard) to protect the critical

section.
2. Switch to another thread and hand off the task of enabling

interrupts and resetting the guard.

What if no other thread to run?
Atomically suspend CPU with interrupts enabled.

30

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 8: Create, Join and Lock
	Project 2
	Project 2
	Reminders
	Recap
	Creating a new thread
	Creating a new thread
	High-level synchronization
	Implementing high-level synchronization primitives
	Atomicity on a uniprocessor
	Lock implementation #1
	Busy waiting
	Lock implementation #2
	Lock implementation #2
	Lock implementation #2
	Okay to sleep with interrupts disabled?
	Would this work?
	Would this work?
	Problem scenario
	Correct pattern
	Interrupt enable/disable pattern
	Enabling/disabling interrupts
	Slide Number 23
	Locks on multiprocessors
	Atomic Read-Modify-Write: Test-And-Set
	TestAndSet usage
	Lock implementation #3
	Would this work?
	Would this work?
	Summary of lock solution

